Skip to main content

Posts

Showing posts from 2015

Infrared Heating System Vs Microwave heating System

Radiation in the Electromagnetic Spectrum is often classified based on the wavelength (spatial period of the wave). Short wavelength radiation comprises of highest energy and which can be very harmful such as Gamma, X-rays and ultraviolet are some examples. Longer wavelength radiation carries lower energy and is typically harmless some examples include RF, Microwaves and infrared, hence these radiations find multiples application such as Communication, Heating, Data transmission and many more. Infrared (IR) is invisible radiant energy, electromagnetic radiation with longer wavelengths than those of visible light, extending from the nominal red edge of the visible spectrum at 700 nanometers (frequency 430 THz) to 1 mm (300 GHz), where as Microwaves are a form of electromagnetic radiation with wavelengths ranging from as long as one meter to as short as one millimeter, or equivalently, with frequencies between 300 MHz (0.3 GHz) and 300 GHz. Microwave are having larger wavelength as c

Gas fired Vs Electric fired Infrared heating System

IR radiation is generated using one of three different technologies: electric, gas catalytic, or radiant gas (and radiant gas systems are mainly used for space heating rather than process heating). Advantages/features Gas Fired Electric Fired Lower-cost energy source Yes No Uses less energy when only surface heating is required Yes Yes Provides well-controlled, low-intensity heat Yes Yes Provides highest-intensity heat No Yes Intensity can be easily adjusted for different products No Yes Electric infrared technology offers more flexibility than gas-catalytic regarding the fancied heating force. Electric and gas-catalytic IR advances have particular qualities that make them pretty much proper relying upon the material and the sort of process. Gas-catalytic IR frameworks by and large oblige a more prominent capita