Skip to main content

Gas fired Vs Electric fired Infrared heating System

IR radiation is generated using one of three different technologies: electric, gas catalytic, or radiant gas (and radiant gas systems are mainly used for space heating rather than process heating).

Advantages/features
Gas Fired
Electric Fired
Lower-cost energy source
Yes
No
Uses less energy when only surface heating is required
Yes
Yes
Provides well-controlled, low-intensity heat
Yes
Yes
Provides highest-intensity heat
No
Yes
Intensity can be easily adjusted for different products
No
Yes

Electric infrared technology offers more flexibility than gas-catalytic regarding the fancied heating force. Electric and gas-catalytic IR advances have particular qualities that make them pretty much proper relying upon the material and the sort of process. Gas-catalytic IR frameworks by and large oblige a more prominent capital venture than the other two, yet they have lower working costs.

To choose which technology is ideal for a particular item or process, various parameters must be viewed as, including item quality, working costs, and generation rates. In processes that oblige fabric and paper drying, gas-catalytic technology has a marginally predominant heating productivity as a result of the force of the radiation it transmits and the measure of time the item uses in the stove. As a rule, a gas-catalytic IR framework is a decent decision for materials that oblige a considerable measure of vitality, for example, a few materials, in light of the fact that its fuel costs are lower than those of electric IR.
Electric IR is more suited to delicate materials that requires a less-exceptional heat or to processes that need brisk reaction times or shorter blasts of serious radiation from the heating gear
Gas-catalytic IR technology has an altered force thickness that relies on upon the temperature of the fuel-oxygen response; it for the most part does not surpass 2 kilowatts for every square foot (kw/ft2—that is 22 kilowatts for every square meter [kw/m2]). Interestingly, electric IR stoves can rapidly and effectively differ the force of emitted heat while accomplishing force densities of up to 37 kw/ft2 (400 kw/m2)—a trademark that makes them predominant for quickly heating metals.

Both the Methods of IR heater firing holds its advantage and limitation it totally depends on the process that is being needed for. 

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Application and Popular Uses of Graphite

  Graphite, archaically referred to as plumbago, is a crystalline type of the element carbon with its atoms organized in a very hexagonal structure. It happens naturally during this kind and is the most stable kind of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is utilized in pencils and lubricants. It’s a good conductor of heat and electricity. Its high conductivity makes it helpful in electronic product like electrodes, batteries, and solar panels. The principal types of natural graphite, each occurring in different types of ore deposits, are A crystalline small flake of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular; Amorphous graphite: very fine flake graphite is sometimes called amorphous; Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fib...

Microwave Radiation’s Role in Glass Processing Industry

Glass is a solid-like and transparent material that is used in numerous applications in our daily lives. It is a sustainable, fully recyclable material which provides great environmental benefits such as contributing to mitigating climate change and saving precious natural resources. It is also highly appreciated in many applications for its inert nature and its contributions to safeguarding people’s health ad well being. It is an unlimited material whose number of applications is constantly evolving and which is more and more used in combination with other material for high-tech applications. Glass processing is energy intensive, therefore the possibility to reduce energy consumption by selective energy intake into portions of glass using microwave heating is investigated. Glass products like bottles, jars, windows, mirrors, tableware, automobile parts etc. are some of the most commonly produced. Microwave heating is a process whereby microwave rays produced by magnetrons are di...