Skip to main content

Gas fired Vs Electric fired Infrared heating System

IR radiation is generated using one of three different technologies: electric, gas catalytic, or radiant gas (and radiant gas systems are mainly used for space heating rather than process heating).

Advantages/features
Gas Fired
Electric Fired
Lower-cost energy source
Yes
No
Uses less energy when only surface heating is required
Yes
Yes
Provides well-controlled, low-intensity heat
Yes
Yes
Provides highest-intensity heat
No
Yes
Intensity can be easily adjusted for different products
No
Yes

Electric infrared technology offers more flexibility than gas-catalytic regarding the fancied heating force. Electric and gas-catalytic IR advances have particular qualities that make them pretty much proper relying upon the material and the sort of process. Gas-catalytic IR frameworks by and large oblige a more prominent capital venture than the other two, yet they have lower working costs.

To choose which technology is ideal for a particular item or process, various parameters must be viewed as, including item quality, working costs, and generation rates. In processes that oblige fabric and paper drying, gas-catalytic technology has a marginally predominant heating productivity as a result of the force of the radiation it transmits and the measure of time the item uses in the stove. As a rule, a gas-catalytic IR framework is a decent decision for materials that oblige a considerable measure of vitality, for example, a few materials, in light of the fact that its fuel costs are lower than those of electric IR.
Electric IR is more suited to delicate materials that requires a less-exceptional heat or to processes that need brisk reaction times or shorter blasts of serious radiation from the heating gear
Gas-catalytic IR technology has an altered force thickness that relies on upon the temperature of the fuel-oxygen response; it for the most part does not surpass 2 kilowatts for every square foot (kw/ft2—that is 22 kilowatts for every square meter [kw/m2]). Interestingly, electric IR stoves can rapidly and effectively differ the force of emitted heat while accomplishing force densities of up to 37 kw/ft2 (400 kw/m2)—a trademark that makes them predominant for quickly heating metals.

Both the Methods of IR heater firing holds its advantage and limitation it totally depends on the process that is being needed for. 

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Electromagnetic Energy in Food Processing

  The use of electromagnetic energy in food processing is considered with respect to food safety, nutritional quality, and organoleptic quality. The results of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiate on sources. Nonionizing microwave energy sources are more and more used in home and industrial food processing and are well-accepted by the end users. But, even though new-fangled Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and further plants products. Microwave  and  radio frequency  energy are allotments of the electromagnetic spectrum that can redeem heat to foods selectively and systematically. Explicitly, microwaves interrelate with water in foods to heat preponderant those allotments that are wet. End users are usual with microwave ovens as household appliances used to warm and cook foods, defrost frozen foods, and pop popcorn. On an industrial scale,...

Industrial Heating System for Biscuit and Cookies Baking

Biscuits and cookies have been part of our life since long time, we all love and like to eat some or other type of biscuits or cookies due its brand, taste, health benefits and many other reasons. One thing that we all love about them is their crispness, crispy and crunchy biscuits have always been first choice as biscuit and cookie lover. If it’s not crunchy then as consumer we never felt like we have some good biscuit or cookie and some it’s not baked properly, even if it’s over crunched and browned lots then also it gives taste like its burned while baking. Hence baking of biscuits and cookies become very important and critical for them to taste at best. Baking is one of very critical process in biscuits and cookies manufacturing plants, and it’s defined in food processing as process to heat the food to reduce its moisture completely and give them sustainable solid structure, so that they can last for longer time duration. In short the baking is kind of cooking food by the manne...