Skip to main content

Electromagnetic Energy in Food Processing



 The use of electromagnetic energy in food processing is considered with respect to food safety, nutritional quality, and organoleptic quality. The results of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiate on sources.

Nonionizing microwave energy sources are more and more used in home and industrial food processing and are well-accepted by the end users. But, even though new-fangled Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and further plants products.

Microwave and radio frequency energy are allotments of the electromagnetic spectrum that can redeem heat to foods selectively and systematically. Explicitly, microwaves interrelate with water in foods to heat preponderant those allotments that are wet.

End users are usual with microwave ovens as household appliances used to warm and cook foods, defrost frozen foods, and pop popcorn. On an industrial scale, microwaves have been used to temper frozen ingredients and have been considered for drying applications, without great success.

The use of electromagnetic energy, especially microwave and radio frequency energy, for industrial processing of food is given renewed attention. Electromagnetic energy exhibits unique properties, like fast and differential heating, which can be of advantage, e.g. for improverneut of process efficiency and product quality.

Application of Electromagnetic Energy :

  • Microwave Ovens
  • Radio Frequency
  • Sterilization

We at KERONE have a team of experts to help you with your need for Electromagnetic Energy equipment from our wide experience. For any query write us at info@kerone.com or visit www.kerone.com.

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Application and Popular Uses of Graphite

  Graphite, archaically referred to as plumbago, is a crystalline type of the element carbon with its atoms organized in a very hexagonal structure. It happens naturally during this kind and is the most stable kind of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is utilized in pencils and lubricants. It’s a good conductor of heat and electricity. Its high conductivity makes it helpful in electronic product like electrodes, batteries, and solar panels. The principal types of natural graphite, each occurring in different types of ore deposits, are A crystalline small flake of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular; Amorphous graphite: very fine flake graphite is sometimes called amorphous; Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fib...

Microwave Radiation’s Role in Glass Processing Industry

Glass is a solid-like and transparent material that is used in numerous applications in our daily lives. It is a sustainable, fully recyclable material which provides great environmental benefits such as contributing to mitigating climate change and saving precious natural resources. It is also highly appreciated in many applications for its inert nature and its contributions to safeguarding people’s health ad well being. It is an unlimited material whose number of applications is constantly evolving and which is more and more used in combination with other material for high-tech applications. Glass processing is energy intensive, therefore the possibility to reduce energy consumption by selective energy intake into portions of glass using microwave heating is investigated. Glass products like bottles, jars, windows, mirrors, tableware, automobile parts etc. are some of the most commonly produced. Microwave heating is a process whereby microwave rays produced by magnetrons are di...