Skip to main content

Choosing Right Infrared Solution for Application

Technically advancing your traditional heaters or dryer with infrared heaters or infrared based dryers are always has been great decision or making up to quality product requirements of the market with lesser cost and time. It’s important to stop for while to understand and give critical thinking over below points:

  • What advantages will the Infrared heaters/dryers will bring along in my current process?
  • Will it help in reducing the total processing cycle time?
  •  What will type of materials, which get processed?
  • What is the physical, physiochemical property, absorptivity, Size, Microstructure and Optical Properties of material?
  •  Can the existing heating/drying system be used?
  • What will be the space requirement for the new IR installation?
There could be thousands of more questions or concern points that arise can arise in your mind when you think of such changes, hence it’s very important to take help or consult experts or heating consultant or search for heating manufacturer, who is expertise in designing and building infrared based heating solution (partnering with company such as KERONE can help you with best suited IR heater/dryer for process requirements).
First and most important aspect in choosing right infrared based heating or drying solution is understand the material that to will be processed inside the Infrared heater/Infrared dryer, as every material absorbs infrared (IR) differently. The generation of heat on material takes place through the absorption and scattering of radiation. When an electromagnetic wave passes through a medium, it undergoes diffraction from the surface of a particle whose refractive index differs from that of the medium. This phenomenon is known as scattering or weakening. The scattering and absorption depends on the size form of particles, microstructure and optical properties of material under processing and also on the wavelength of the radiation of the Infrared emitter. On the other hand the radiation absorption in material depends mainly on the water content, thickness, and physicochemical nature of the material and wavelength of the radiation.  
Hence choosing the correct wavelength for the Infrared heaters is very critical. The infrared emitter which generates or radiates the desired wavelength becomes very important part of the infrared heating/drying systems.   Choosing correct emitter ensures the most effective heat work that will yield reduced cycle time i.e. achieve the desired temperature very quickly. To understand the basic IR wavelength requirements it’s important to understand the Planck’s Law, the Max Planck reported that “the spectral distribution of radiation from a blackbody source that emits 100% IR radiation at a given single temperature”. According to Planck the higher the object temperature the greater the amount of IR energy will be produced.


To summarize, the emitted infrared frequencies and the absorption frequency of material under process should match to allow most efficient heat transfer. Hence it’s always advisable to consult experts such as KERONE (a 100% quality oriented and technologically advanced Indian company #makeinindia) before making choice. 

Comments

Popular posts from this blog

Artificial Intelligence (A.I) in Food Industry

  When discussing about the food industry, technology isn’t generally the first thought that comes to mind. But these days, technology in the food industry is a required part of   food production   and delivery processes. We find food through applications, and manufacturers produce it with the help of robotics and data processing. Tech could remarkably enhance packaging, increasing shelf life and food safety. The eminence of food is also improving while manufacturing costs are less. Knowing what better to produce in huge amount of numbers is the key to increase revenue. Customer and market insistence are changing very fast, so it is even more important to be one-step ahead of the competition. Explaining the most habitual tastes and preferences is the most praised thing for a food business owner as well as for a food manufacturer. For example, the newest trends in food tech are attached to a stream of healthy lifestyle followers. In order to recognize them,  Machine Learning  utilizes t

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, failure of

Microwave Continuous Vulcanization (CV) Rubber Curing Oven

Vulcanization is process of converting natural rubber or rubber polymers into more durable and mechanically strengthens rubber by the process of mixing sulfur and processing. This process results in changing the cross-linking bonds within the natural rubber and making bonds more strong and non-sticky.  Vulcanization curing is achieved by heating the natural rubber or rubber polymer at very high temperature along with sulfur or any other agent, such high level of temperature rise results into changing of bond within the rubber and resulting in non-sticky, maker it lesser deformable when heated, and removes the brittleness this helps rubber to achieve the desired level of elasticity. Continuous Vulcanization curingprocess is most common process used for variety of application. In the process Continuous Vulcanization curing rubber and accelerator is put under high temperature and pressure, this mixture is passed through the continuous heating line during the process, some of C-H bo