Skip to main content

Strong Casting and Exquisite Molding, by Modern Foundry Technologies

A foundry is an industrial facility that produces metal castings. Metals are cast into shapes by liquefying them into a fluid, pouring the metal into a mold, and removing or emptying the form material after the metal has solidified as it cools. The most widely recognized metals prepared are aluminum and solid metal. However, other metals, for example, bronze, metal, steel, magnesium, and zinc, are likewise used to create castings in foundries.
Foundry processes can be divided into two types – ferrous foundries and non-ferrous foundries i.e. the type of metal they use for casting of the moulds. Ferrous and Non-ferrous metals are distinguished by the presence of iron in the metal. Ferrous metals are defined as those metals that contain iron. Non-ferrous metals do not. Iron and its types like cast irons, grey iron, ductile iron, steel and other iron alloys are the examples of ferrous metals. Whereas Non-ferrous metals include every metal and alloy that does not contain iron, a short list of non-ferrous metals –
  • Precious metals like silver, platinum, and gold
  • Copper and its alloys like bronze and brass
  • Nickle, Palladium, Platinum
  •  Aluminum
  • Titanium
  • Tin, Lead
  • Zinc
Ferrous metals are the most well-known decision for castings, frequently picked for their cost-productivity and their mechanical properties. Now and again it’s not the quality of a metal that manages the decision, yet properties, for example, weight, corrosion resistance, or non-attraction. Non-ferrous alloys like bronze and brass can likewise be picked for tradition or for their delicacy.
Applications of Foundry –
  • De-waxing of casting moulds
  • Drying of casting moulds
  • Hardening of foundry moulds
  • Regeneration of casting mould waxes
  • Removing of solid objects from moulds
  • Core drying

The history of foundry traced back to the ancient period in which metallic objects in the form of coins, arrows, and household articles were in use. The casting process is said to have been practiced in early historic times by the craftsmen of Greek and Roman civilizations since then the role of metals has acquired unique significance. In modern times, mechanization leads to increased production, improved quality and reduction in production costs. Measures that aim at improving working conditions, delivering better quality products deserve enthusiastic support.
KERONE has always been the choice of various clients for its broad ‘hands-on’ involvement of use of microwave, radio frequency and infrared in all the foundry processes. Demystifying the numerous process of foundry casting and molding, we extend different machinery facilities and help to our regarded customers according to their particular procedure requisite. Diminishing natural effects is likewise a critical viewpoint for any preparing industry, and thus the entirety of our hardware and arrangement improvement is centered on limiting utilities consumption and better water and vitality stewardship, decreasing the product losses and wastages produced by the procedure.
Why choose us?
Since the last 42 years, accuracy, efficiency, machine quality and output quality are not just words but KERONE’s lifetime commitment towards our profession since its inception, creating a base of more than 1000 loyal customers. Our systems are used to meet the varying demands of numerous industrial applications – all with a level of precision that manufacturers seek. Fulfilling demands as per client’s specification has been our USP and we strive to carry the same forward. We also provide detailed assistance for installation without much hassle of complex functioning of the machinery. We always strive to achieve more than client satisfaction with our timely delivery, quality and efficiency towards all equipment manufactured by us.

Comments

Popular posts from this blog

Artificial Intelligence (A.I) in Food Industry

  When discussing about the food industry, technology isn’t generally the first thought that comes to mind. But these days, technology in the food industry is a required part of   food production   and delivery processes. We find food through applications, and manufacturers produce it with the help of robotics and data processing. Tech could remarkably enhance packaging, increasing shelf life and food safety. The eminence of food is also improving while manufacturing costs are less. Knowing what better to produce in huge amount of numbers is the key to increase revenue. Customer and market insistence are changing very fast, so it is even more important to be one-step ahead of the competition. Explaining the most habitual tastes and preferences is the most praised thing for a food business owner as well as for a food manufacturer. For example, the newest trends in food tech are attached to a stream of healthy lifestyle followers. In order to recognize them,  Machine Learning  utilizes t

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, failure of

Microwave Continuous Vulcanization (CV) Rubber Curing Oven

Vulcanization is process of converting natural rubber or rubber polymers into more durable and mechanically strengthens rubber by the process of mixing sulfur and processing. This process results in changing the cross-linking bonds within the natural rubber and making bonds more strong and non-sticky.  Vulcanization curing is achieved by heating the natural rubber or rubber polymer at very high temperature along with sulfur or any other agent, such high level of temperature rise results into changing of bond within the rubber and resulting in non-sticky, maker it lesser deformable when heated, and removes the brittleness this helps rubber to achieve the desired level of elasticity. Continuous Vulcanization curingprocess is most common process used for variety of application. In the process Continuous Vulcanization curing rubber and accelerator is put under high temperature and pressure, this mixture is passed through the continuous heating line during the process, some of C-H bo