Skip to main content

IR and MW heating Systems increases productivity of flameproof and water-repellent fabric

A textile is a flexible material, consisting of a network of natural or artificial fibres made by spinning raw fibres from plants, animals and other minerals. Textile more commonly is known as ‘Fabric’ or ‘Cloth’ in textile assembly trades, though there are subtle differences in these terms in specialized usage. The creation of textiles involves several processes than one might think. The production of fibres are spun into yarns, and then used to create fabrics into many other sub-processes. Textiles vary from, cotton, flax, jute, wool, silk, ramie, leather or synthetic materials like nylon, polyester, rayon etc.
In India, traditionally, after agriculture textile production is the only industry that has generated huge employment for both skilled and unskilled labour. India is the second largest producer of fibre in the world and the major fibre produced is cotton which is about 60% of the whole textile production.
Heat is an integral part of many textile processes. There are process heating systems used in textile production process supplying direct and indirect heat by means of numerous machinery produced by KERONE Engineering Solutions Ltd. Microwave and Infrared heaters find extensive use in the textile industry. These heaters find application in the following various processes:
  • Coating
  • Embossing
  • Lamination
  • heat setting
  • moisture evaporation
  • print drying
IR and MW are very effective mediums for these applications with a different level of precision and other advantages including cost saving, less energy consumption, increases line speed etc. Efficient use of these heating systems has increased the productivity of flameproof and water-repellent fabrics.
KERONE has always been the decision of various clients for its broad ‘hands-on’ involvement of use of microwave and infrared in the processes of textile industry. Demystifying the numerous process of textile production and, we extend different machinery facilities and help to our regarded customers according to their particular procedure requisite. Diminishing natural effects is likewise a critical viewpoint for any preparing industry, and thus the entirety of our hardware and arrangement improvement is centered on limiting utilities consumption and better water and vitality stewardship, decreasing the product losses and wastages produced by the procedure.
Why choose us?
Since the last 42 years, accuracy, efficiency, machine quality and output quality are not just words but KERONE’s lifetime commitment towards our profession since its inception, creating a base of more than 1000 loyal customers. Our systems are used to meet the varying demands of numerous industrial applications – all with a level of precision that manufacturers seek. Fulfilling demands as per client’s specification has been our USP and we strive to carry the same forward. We also provide detailed assistance for installation without much hassle of complex functioning of the machinery. We always strive to achieve more than client satisfaction with our timely delivery, quality and efficiency towards all equipment manufactured by us.

Comments

Popular posts from this blog

Artificial Intelligence (A.I) in Food Industry

  When discussing about the food industry, technology isn’t generally the first thought that comes to mind. But these days, technology in the food industry is a required part of   food production   and delivery processes. We find food through applications, and manufacturers produce it with the help of robotics and data processing. Tech could remarkably enhance packaging, increasing shelf life and food safety. The eminence of food is also improving while manufacturing costs are less. Knowing what better to produce in huge amount of numbers is the key to increase revenue. Customer and market insistence are changing very fast, so it is even more important to be one-step ahead of the competition. Explaining the most habitual tastes and preferences is the most praised thing for a food business owner as well as for a food manufacturer. For example, the newest trends in food tech are attached to a stream of healthy lifestyle followers. In order to recognize them,  Machine Learning  utilizes t

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, failure of

Microwave Continuous Vulcanization (CV) Rubber Curing Oven

Vulcanization is process of converting natural rubber or rubber polymers into more durable and mechanically strengthens rubber by the process of mixing sulfur and processing. This process results in changing the cross-linking bonds within the natural rubber and making bonds more strong and non-sticky.  Vulcanization curing is achieved by heating the natural rubber or rubber polymer at very high temperature along with sulfur or any other agent, such high level of temperature rise results into changing of bond within the rubber and resulting in non-sticky, maker it lesser deformable when heated, and removes the brittleness this helps rubber to achieve the desired level of elasticity. Continuous Vulcanization curingprocess is most common process used for variety of application. In the process Continuous Vulcanization curing rubber and accelerator is put under high temperature and pressure, this mixture is passed through the continuous heating line during the process, some of C-H bo