Skip to main content

Fundamentals of Thermal Radiations



 Consider a hot object that is suspended in an evacuated chamber whose walls are at room temperature. The hot object will eventually cool down and reach thermal equilibrium with its surroundings. This mechanism is radiation. Radiation transfer occurs in solids as well as liquids and gases. But heat transfer through an evacuated space can occur only by radiation. For example, the energy of the sun reaches the earth by radiation. It is interesting that radiation heat transfer can occur between two bodies separated by a medium colder than both bodies. The theoretical foundation of radiation was established in 1864 by physicist James Clerk Maxwell, Who postulated that accelerated charges or changing electric currents give rise to electric and magnetic fields. These rapidly moving fields are called electromagnetic waves or electromagnetic radiation.

Thermal Radiation

Thermal radiation is electromagnetic radiation generated by the thermal motion of particles in matter. All matter with a temperature greater than absolute zero emits thermal radiation. Particle motion results in charge-acceleration or dipole oscillation which produces electromagnetic radiation.

Infrared radiation emitted by animals (detectable with an infrared camera) and cosmic microwave background radiation are examples of thermal radiation.

If a radiation object meets the physical characteristics of a black body in thermodynamic equilibrium, the radiation is called blackbody radiation.[1] Planck’s law describes the spectrum of blackbody radiation, which depends solely on the object’s temperature. Wien’s displacement law determines the most likely frequency of the emitted radiation, and the Stefan–Boltzmann law gives the radiant intensity.

Thermal radiation is also one of the fundamental mechanisms of heat transfer. That is, everything around us such as walls, furniture, and our friends constantly emits (and absorbs) radiation. The type of electromagnetic radiation that is pertinent to heat transfer is the thermal radiation emitted as a result of energy transitions of molecules, atoms, and electrons of a substance. Thermal radiation is continuously emitted by all matter whose temperature is above absolute zero.

Thus, thermal radiation includes the entire visible and infrared (IR) radiation as well as a portion of the ultraviolet (UV) radiation.

There are 4 main properties that characterize thermal radiation:

  • Thermal radiation emitted by a body at any temperature consists of a wide range of frequencies. The frequency distribution is given by Planck’s law of black-body radiation for an idealized emitter.
  • The dominant frequency (or color) range of the emitted radiation shifts to higher frequencies as the temperature of the emitter increases.
  • The total amount of radiation of all frequency increases steeply as the temperature rises; it grows, where the absolute temperature of the body.
  • The rate of electromagnetic radiation emitted at a given frequency is proportional to the amount of absorption that it would experience by the source, a property known as reciprocity. Thus, a surface that absorbs more red lights thermally radiates more red lights.

Thermal radiation is one of the three principal mechanisms of heat transfer. It entails the emission of a spectrum of electromagnetic radiation due to an object’s temperature. Other mechanisms are convection and conduction.

Radiation heat transfer is characteristically different from the other two in that it does not require a medium and, in fact it reaches maximum efficiency in a vacuum. Electromagnetic radiation has some proper characteristics depending on the frequency and wavelengths of the radiation. The phenomenon of radiation is not yet fully understood.

We at KERONE have a team of experts to help you with your need for Thermal Radiation in various products range from our wide experience.

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Electromagnetic Energy in Food Processing

  The use of electromagnetic energy in food processing is considered with respect to food safety, nutritional quality, and organoleptic quality. The results of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiate on sources. Nonionizing microwave energy sources are more and more used in home and industrial food processing and are well-accepted by the end users. But, even though new-fangled Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and further plants products. Microwave  and  radio frequency  energy are allotments of the electromagnetic spectrum that can redeem heat to foods selectively and systematically. Explicitly, microwaves interrelate with water in foods to heat preponderant those allotments that are wet. End users are usual with microwave ovens as household appliances used to warm and cook foods, defrost frozen foods, and pop popcorn. On an industrial scale,...

Application and Popular Uses of Graphite

  Graphite, archaically referred to as plumbago, is a crystalline type of the element carbon with its atoms organized in a very hexagonal structure. It happens naturally during this kind and is the most stable kind of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is utilized in pencils and lubricants. It’s a good conductor of heat and electricity. Its high conductivity makes it helpful in electronic product like electrodes, batteries, and solar panels. The principal types of natural graphite, each occurring in different types of ore deposits, are A crystalline small flake of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular; Amorphous graphite: very fine flake graphite is sometimes called amorphous; Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fib...