Skip to main content

Drying System Temperature Control for a Large Format Textile Printer



In the digital giant format textile business, the drying system is one amongst the most vital subsystems within the printer. The objectives of this method are dry the media enough in order that there’s no transfer between the rolled media and also the following one, and to produce a hot air (airflow and temperature) within the print zone to reduce bleed and coalescence. And one amongst the most critical parameters within the dryers is that the management of the temperature uniformity on the scan axis within the print zone. A fine control of the temperature uniformity will increase the media versatility by enabling lower temperatures within the print zone whereas drying and increase the throughout capability level. Also improves bleed and coalescence and alternative image quality artifacts. In many printers, the drying system is based on convection with a hot chamber flowing hot air through several diffusers to the print zone.

In those drying systems, in most of the cases, the temperature uniformity can be achieved by separating the chamber in several modules. Each module controlled independently.

The main drawback resolved by this invention is that the improvement of the temperature uniformity in each the hot chamber and therefore the print zone on the scan axis. Within the dryer convection systems (that are using many local fan/heaters assemblies on the chamber) it’s difficult to confirm the uniform temperature and pressure. but if the variability of the temperature may be controlled and reduced then the temperature may be reduced (allowing wider media ranges) or the drying capability may be improved.

Prior solutions and their disadvantages to improve the temperature uniformity in the convective dryers, in the hot chambers, are:

Use a unique hot chamber along the scan axis:

There is a unique chamber and many fan/heaters assemblies on the scan axis and the temperature sensors may be implemented or not.

These are the main disadvantages of this configuration:

  • Large variability of temperature along the hot chamber and the print zone
  • When there is no temperature sensor in the chamber, the air temperature cannot be controlled. In some printers, the heater is only used to warm‐up the printer when the external temperatures are low.

Use several hot multi‐chambers along the scan axis:

There are several chambers (depending on the printer width) with a fan/heater/temperature sensor in each chamber. Each module can control de air temperature with temperature sensor. The main disadvantage of this configuration is the cost implied and the overall complexity. Each module required each hardware supports and PCA controls.

Increase the number of fans/heaters in a unique chamber along the scan axis:

Another option can be used to improve the temperature uniformity can be increase the numbers of fans/heaters assemblies along the scan axis. The more fan/heaters assemblies, better temperature uniformity can be got.

The main disadvantage of this configuration is the cost of the components

  • Fan
  • Heater
  • Temperature sensors

Advantages of the solution over what has been done before:

  • As stated before, this solution offers much better temperature uniformity along the scan axis hot chamber and reducing the cost and the complexity of the drying system.
  • Another important advantage is that, since the temperature sensor is not located in the hot airflow, the measurement variability is much accurate.
  • And another important advantage of the solution is that the whole assembly (fan + heater + air distributor + temperature sensor) serviceability is very good. All the components of the Drying System can be replaced very easily by service or even trained customers.

We at KERONE have a team of experts to help you with your need for Drying Systems in various products range from our wide experience.

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Electromagnetic Energy in Food Processing

  The use of electromagnetic energy in food processing is considered with respect to food safety, nutritional quality, and organoleptic quality. The results of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiate on sources. Nonionizing microwave energy sources are more and more used in home and industrial food processing and are well-accepted by the end users. But, even though new-fangled Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and further plants products. Microwave  and  radio frequency  energy are allotments of the electromagnetic spectrum that can redeem heat to foods selectively and systematically. Explicitly, microwaves interrelate with water in foods to heat preponderant those allotments that are wet. End users are usual with microwave ovens as household appliances used to warm and cook foods, defrost frozen foods, and pop popcorn. On an industrial scale,...

Application and Popular Uses of Graphite

  Graphite, archaically referred to as plumbago, is a crystalline type of the element carbon with its atoms organized in a very hexagonal structure. It happens naturally during this kind and is the most stable kind of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is utilized in pencils and lubricants. It’s a good conductor of heat and electricity. Its high conductivity makes it helpful in electronic product like electrodes, batteries, and solar panels. The principal types of natural graphite, each occurring in different types of ore deposits, are A crystalline small flake of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular; Amorphous graphite: very fine flake graphite is sometimes called amorphous; Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fib...