Skip to main content

Continuous Granulation and Drying Techniques Trends

 

The term “continuous” is applied to all production or manufacturing processes that run with a continuous flow. With that definition, continuous processing of solid dosage products in the pharmaceutical industry means starting the process from the synthesis of API to the final packaging of tablets or capsules 24/7 all year-round.

The pharmaceutical industry has been slow to adopt or even consider the concept of continuous processing, even though its value has already been proven in other industries—polymer, food, dairy, electronics, automobile and petrochemical/chemical—which have implemented fully continuous production processes for many years.

The pharmaceutical industry is also dominated by batch processes due to the smaller amounts that must be processed compared to other industries. The small material quantities available during the development stage also dictate the use of a batch process during the design phase of the formulation and manufacturing process, and these same batch-wise processes are often scaled up to production. Batch-processing equipment is the most flexible and convenient to use. There is reluctance from the industry to embrace continuous manufacturing because of the additional capital investment required along with the prospect of the current vast disposition of batch process equipment and staff training that would be required.

Continuous granulation

The granulation aspect is defined as “A unit operation of mechanical process engineering characterised by a combination with a change in particle size using pressure, solvent or binder.”

There are completely different techniques utilized within the industry to produce granulated product depending on the physico-chemical properties of the composition, intended product attributes needed, and therefore the access to the process technology needed to produce the dosage form.

Achieving the vision of continuous manufacturing of solid dosage, where product starting as API and ending up as a finished dosage form via wet granulation, will not happen immediately. To start you need to ensure that the necessary technology and skills are sufficiently available.

Much of the product quality should be achieved by designing an effective process at the design stage and supplemented, as needed, by additional in-process controls, monitoring and end product testing.

Many unit operations are intrinsically continuous and are well understood. For all remaining unit operations, equipment is accessible. Experiences with continuous wet granulation are positive. Opportunities to a adopt continuous method exist and may depend upon QbD approach, for that it’ll need a lot of advanced management systems with simple and more complex PATs. It should be realised that not all product or processes are manufactured with continuous granulation approach. each API will have to be evaluated for its capability to be a candidate for continuous granulation and a pertinent method will have to be developed for it.

We at KERONE have a team of experts to help you with your need for Continuous Granulation Systems in various products range from our wide experience.


Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Electromagnetic Energy in Food Processing

  The use of electromagnetic energy in food processing is considered with respect to food safety, nutritional quality, and organoleptic quality. The results of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiate on sources. Nonionizing microwave energy sources are more and more used in home and industrial food processing and are well-accepted by the end users. But, even though new-fangled Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and further plants products. Microwave  and  radio frequency  energy are allotments of the electromagnetic spectrum that can redeem heat to foods selectively and systematically. Explicitly, microwaves interrelate with water in foods to heat preponderant those allotments that are wet. End users are usual with microwave ovens as household appliances used to warm and cook foods, defrost frozen foods, and pop popcorn. On an industrial scale,...

Importance and applications of Industrial Minerals

  Industrial resources (minerals) are geological materials that are mined for their industrial worth, that are not fuel (fuel minerals or mineral fuels) and aren’t sources of metals (metallic minerals) but are utilized in the industries based on their physical and/or chemical properties. they’re utilized in their natural state or after beneficiation either as raw materials or as additives in a very wide range of applications. Industrial minerals could also be defined as minerals mined and processed (either from natural sources or synthetically processed) for the value of their non-metallurgical properties, that provides for their use in a particularly wide range of industrial and domestic applications.  As a general rule, they’ll also be defined as being non-metallic, non-fuel minerals. Obvious examples of naturally occurring  industrial minerals  include: clays sand talc limestone gypsum pumice potash Other examples of  natural industrial minerals  include...