Skip to main content

DRYING OF THE PAPER AND PAPER COATINGS

The paper and paper products plays more substantial role in the day-to-day life of the human, its usage are increasing every day in as newspapers, magazines, envelopes, books & diaries, stationeries, packaging and etc. the usage of paper and paper related products have become nearly unlimited. The increasing application has increased the demand of quality paper, majorly the paper quality is defined in terms of its smoothness, glossy finish, printability, uniform thickness and moisture contain.
The increasing demand of the paper the manufacturers wanted to have the paper manufacturing machines to produce higher quality paper, increase productivity, reduction in the waste, safe and improved process control. The paper manufacturing and paper coating process is known as one of the major dewatering process, which requires removal of all even a small amount of water also by the way of evaporation for the quality paper and coatings. The paper machine consist of the four sections Forming Section, Press Section, Drying Section, Calender Section. Wikipedia explains the sections as follows:

  • Forming section, commonly called the wet end, is where the slurry of fibres filters out fluid a continuous fabric loop to form a wet web of fibre.
  • Press section where the wet fibre web passes between large rolls loaded under high pressure to squeeze out as much water as possible.
  • Drying section, where the pressed sheet passes partly around, in a serpentine manner, a series of steam heated drying cylinders. Drying removes the water content down to a level of about 6%, where it will remain at typical indoor atmospheric conditions.
  • Calender section where the dried paper is smoothened under high loading and pressure. Only one nip (where the sheet is pressed between two rolls) is necessary in order to hold the sheet, which shrinks through the drying section and is held in tension between the press section (or breaker stack if used) and the calender. Extra nips give more smoothing but at some expense to paper strength.

The most critical part of the paper making process is drying the paper post press section to leave around 6% of the moisture contain within paper, hence the selection of the dryer and drying technology plays very vital role in total paper production system. In the dryer section, the paper entanglement passes over rotating; a cast iron cylinder which was heated by the means of heat transfer mechanism such as Convention, Conduction and/or Radiation and the most of the remaining water is removed by evaporation. When the paper leaves the dryer section its solid content has increased to about 90-95%. Thermal energy transferred from the heater is used for the dewatering of the paper in the dryer section.
Since the drying is critical in the entire paper production process as overlooking its criticality by the paper manufactures and/or plant operators may results in improper paper quality of paper, increased waste and reduced production. Hence the choice of the drying technology and dryers needs to be done properly by consulting with the leaders in the field of heater and heating technologies such as KERONE.
KERONE has been serving the paper and other manufacturing processes with its quality and technically superior innovative product quality since last 40 years. We at KERONE is have team of experts to help you with the your need of heating system from our wide experience.  For any query write us at info@kerone.com .

Comments

Popular posts from this blog

Artificial Intelligence (A.I) in Food Industry

  When discussing about the food industry, technology isn’t generally the first thought that comes to mind. But these days, technology in the food industry is a required part of   food production   and delivery processes. We find food through applications, and manufacturers produce it with the help of robotics and data processing. Tech could remarkably enhance packaging, increasing shelf life and food safety. The eminence of food is also improving while manufacturing costs are less. Knowing what better to produce in huge amount of numbers is the key to increase revenue. Customer and market insistence are changing very fast, so it is even more important to be one-step ahead of the competition. Explaining the most habitual tastes and preferences is the most praised thing for a food business owner as well as for a food manufacturer. For example, the newest trends in food tech are attached to a stream of healthy lifestyle followers. In order to recognize them,  Machine Learning  utilizes t

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, failure of

Microwave Continuous Vulcanization (CV) Rubber Curing Oven

Vulcanization is process of converting natural rubber or rubber polymers into more durable and mechanically strengthens rubber by the process of mixing sulfur and processing. This process results in changing the cross-linking bonds within the natural rubber and making bonds more strong and non-sticky.  Vulcanization curing is achieved by heating the natural rubber or rubber polymer at very high temperature along with sulfur or any other agent, such high level of temperature rise results into changing of bond within the rubber and resulting in non-sticky, maker it lesser deformable when heated, and removes the brittleness this helps rubber to achieve the desired level of elasticity. Continuous Vulcanization curingprocess is most common process used for variety of application. In the process Continuous Vulcanization curing rubber and accelerator is put under high temperature and pressure, this mixture is passed through the continuous heating line during the process, some of C-H bo