Skip to main content

Why and How to temper a Glass?

From last decade we have seen increase in the usage of the Glass in various sectors such as façade of big corporate houses or residential buildings in real estate, home & office interior and decorative, crockery items, water bottles, in Automobile industry, and in last few years the use of small tempered glasses as protective screen guards for the mobile and other electronics systems especially in India and Asian countries. This increased usage of glass with greater human surrounding requires two important things first it should not break easily; second even if it broke it should not harm anyone in any sense.
Now the question is why and how to achieve the above mentioned requirements, the desired requirements are achieved by the way of heat treatment on the glass. This process of heat treatment is known as the Tempering; in tempering the glass is heated in the tempering oven of batch or continuous type, the glass is heated to its softening point of temperature of around 564 degree Celsius to 620 degree Celsius once the desired temperature is achieved the glass is cooled rapidly under high-pressure in few seconds is called “quenching”. This give the glass edges strengths and increases the breaking strength and safety, the properly tempered glass has strength to resist pressure and impact of up to 100, 00 psi to 240, 00 psi and when tempered glass breaks it breaks into relatively small and harmless fragments.
Characteristics of the Tempered Glass: 

  • Tempered Glass can endure 4 to 5 time’s greater pressure than the annealed glass with physical property.
  • Thermal strength of the tempered glass is much higher.
  • Tempered glass breaks in small harmless fragments and does not results into sharp edges of the fragments, hence can be denoted as safety glass. 
  • The basic property of the glass is maintained such as light transmission, radiating solar energy.
  • No cutting or shape change is possible once the glass is annealed.

We at KERONE have experience of 40 years in helping the industries with their heating needs, as to make the glass more usable the tempering is required and we have right solutions that fits the heating needs of the tempering process, we at KERONE is have team of experts to help you with the your need of heaters from our wide experience.  For any query write us at info@kerone.com

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Application and Popular Uses of Graphite

  Graphite, archaically referred to as plumbago, is a crystalline type of the element carbon with its atoms organized in a very hexagonal structure. It happens naturally during this kind and is the most stable kind of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is utilized in pencils and lubricants. It’s a good conductor of heat and electricity. Its high conductivity makes it helpful in electronic product like electrodes, batteries, and solar panels. The principal types of natural graphite, each occurring in different types of ore deposits, are A crystalline small flake of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular; Amorphous graphite: very fine flake graphite is sometimes called amorphous; Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fib...

Drying Ginger by Hot Air Circulation Drying Oven

  Ginger is a perennial creeping plant, with thick tuberous rhizome, manufacturing and erect stem 30-100cm tall. It’s propagated from rhizome cuttings, planted on rich, well-drained soil. The top five ginger producing countries in the world are India, China, Nepal, Nigeria, and Thailand. India, with a production of 7.03 billion, leads in the world ginger cultivation. The subsequent 2 countries are `China and Nepal, with the production of 4.25 billion and 2.55 billion, respectively. The first known constituents of ginger root include starch, gingerols, zingibain, oleoresins, essential oil, mucilage, and protein. The dried type of ginger, ginger powder, is utilized as a spice. And its extracts, ginger oil, are utilized in beverages and confectionery. Ø Advantages of Ginger Dehydration Enhance ginger's value Fresh or raw ginger promotes sweating and dispersing exterior cold. While dried ginger is more effective in warming spleen and stomach and expelling interior cold. Therefor...