Skip to main content

Infrared Heating and Drying for Textiles

 Many divergent heating and drying processes are needed during the manufacture and processing of textiles. High value, technical textiles must be fixed dependably and partially, coatings on fabrics and materials need to be dried as quickly as possible. The insistence on heating systems is continuously increasing and heating processes must keep pace with manufacturing processes. Infrared is a proven source of heat in textile processing, as infrared sends high heating power in extremely compact times. This helps to lessen energy consumption, to expand production speeds and to lower production costs.

Fibres and yarns are dyed, carpets are coated on their reverse side, curtains or blinds are printed – and infrared technology is perpetually there to help ensure that the required heating process is carried out quickly and beneficially. There is a broad spectrum of wavelengths, shapes and power products to choose from, the heating can be perfectly matched to product and process. That saves on time, effort and operating costs!

Heating periods should not compress the manufacturing process. Infrared heating technology helps to modernise production and improve quality. Infrared emitters ensure that car seat covers are crease-free, that interior carpets fit perfectly – and that airbags deploy expeditiously in an emergency. It pays to think infrared when we’re talking about cars.

Infrared radiation (IR), is an electromagnetic wave with longer wavelengths than the visible light, thus it is invisible to the human eye.




Infrared heat fetching is eccentric compared to convection and conduction since the heat transmition is considered to be a heat source which propagates large quantities of heat energy to the fibres in a short amount of time. The infrared process is an environmental technique that lessens pollution by decreasing the waste dyes and electrolytes in the effluent from reactive dyeing, because of the high fixation that occurred using the infrared heating technique side by side to other conventional dyeing techniques.Infrared waves are contemplated to be in the lower-middle range of wave frequencies that is between microwaves and visible light. Infrared waves with longer frequencies generate heat such as fire, the sun and other heat producing sources. On the other hand, infrared waves with stubby frequencies do not produce high heat so, they are used in other technologies such as remote controls.

Drying is necessary to eliminate or reduce the water content of the fibres, yarns and fabrics following wet processes. Drying, in particular by water evaporation, is a high-energy-engrossing step.

Drying can be drawn on to the subsequent textile materials:

  • Loose fibre
  • Hanks
  • Yarn Packages
  • Fabric

Loose fibre drying:

The water content of the fibre is initially turned down by either centrifugal extraction or by mangling before evaporative drying.

Hanks drying:

Evaporative dryers contains a number of heated chambers with fan assisted air circulation, through which the hanks pass suspended on hangers or poles or supported on a conveyer. The hank sizes employed in carpet yarn processing require a slow passage through the dryer to ensure even final moisture content, and a residence time of up to 4 hours is not uncommon. Air temperature is maintained below 120°C to prevent yellowing.

Less commonly, hanks may be dried by employing a dehumidifying chamber. Moisture is recovered by condensation, using conventional dehumidification equipment. In comparison to evaporative dryers, yarn residence time tends to be longer, but energy utilization is lower.

Yarn packages drying:

The moisture of dyed packages is reduced at first by centrifugal extraction. Specially designed centrifuges, compatible with the design of the dyeing vessel and yarn carriers are engaged. Traditionally packages were oven dried, very long residence times being required to ensure sufficient drying of the yarn on the inside of the package. Two techniques are currently used, rapid (forced) air drying and radio frequency drying, the latter sometimes being cobined with initial vacuum extraction.

Fabric drying:

The fabric transported within two blankets through a set of drying modules. Internally each module the fabric is dried by means of a hot air flow. This apparatus is normally used for merged finishing operations on knitted and woven fabrics when, along with drying, a shrinking effect is also essential in order to give the fabric a soft hand and good dimensional firmness.

We at Kerone have 44+ years’ experience in infrared heating technology and provide individual advice and service. Kerone offers its customers the potential for proving trials in its in-house Applications Centre or on-site with experienced technical assistance.

For any query write us at info@kerone.com or visit www.kerone.com.

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Microwave Continuous Vulcanization (CV) Rubber Curing Oven

Vulcanization is process of converting natural rubber or rubber polymers into more durable and mechanically strengthens rubber by the process of mixing sulfur and processing. This process results in changing the cross-linking bonds within the natural rubber and making bonds more strong and non-sticky.  Vulcanization curing is achieved by heating the natural rubber or rubber polymer at very high temperature along with sulfur or any other agent, such high level of temperature rise results into changing of bond within the rubber and resulting in non-sticky, maker it lesser deformable when heated, and removes the brittleness this helps rubber to achieve the desired level of elasticity. Continuous Vulcanization curingprocess is most common process used for variety of application. In the process Continuous Vulcanization curing rubber and accelerator is put under high temperature and pressure, this mixture is passed through the continuous heating line during the process, some of C-...

Organic Food and its increasing consumer demand

Organic Food Processing  is where organic raw materials are processed into food and drink. The organics standard of food processing is to protect the food constituents so that organic ingredients are used, and encourage the avoidance of unnecessary chemical or physical. Organic labeling offers consumers, the confidence that the eatables they consume are produced under controlled organic standards. Organic food should be of high nutritional and high natural quality. With the growing awareness even the governments of various countries have setup a separate body to monitor the whole Organic Processing System, in India that being National Program for Organic Production (NPOP). India is one of the upcoming leading processors in this sector. Some private standards demand that organic food should fulfill the criteria of wholesome nutrition, where processing methods must be seen as relevant tools. Most processing methods have more or less strong influences on product properties. Heat...