Skip to main content

Importance of Heat Exchanger in Food Processing Industry

 A Heat exchanger is a systematic device constructed for the successful heat transfer between two fluids of non-identical temperatures. The media maybe separated through a solid wall, to intercept mixing, or they may be in direct contact. Heat exchangers are fully used in food processing industry, dairy industry, biochemical processing, pharmaceuticals, chemical plants and petroleum plants to name a few. The use of heat exchangers in bioprocess industry is ubiquitous; from high temperature pasteurization to low temperature freezing.

Heat exchangers have long been a required tool for pasteurization, sterilization, and other food processing needs. And while the technology is fully fledged, there’s still enough of innovation occurring.

First, a segment of background. Clearly speaking, a heat exchanger is a device used to transfer heat between two or more fluids. In the food and beverage industry, heat exchangers are frequently used to lessen or kill microbials, thereby making products safe for consumption and extending their shelf life. A heat exchanger may also be utilized to heat or cool products prior to filling, drying, concentration, or other processes.

Heat exchangers can be utilized in food Industry as a process of cooling down different products in the industry. Huge number of products like hazelnut paste and other types of food pastes are needed to be cooled down or heated up in order to be processed further. For this process Heat exchanger can be utilized. The type of Heat Exchanger utilized is a Scraped Surface Heat Exchanger or SSHE. SSHE is planned for processing various high textured materials and heat exchanging a variety of heat sensitive products like fruit pulps. The continuous scraping action put forth on surface ensures uniform heating of the contents, prevents fouling. It is also stiffly used for materials that solidify at the wall. Wide variations of SSHE have been evolved for the same purpose. Dynamic Scraped Surface Heat Exchanger, Rotary Scraped Surface Heat Exchanger, Conventional Design Scraped Surface Heat Exchanger, Alternate Blades Scraped Surface Heat Exchanger are a few studied. It has been researched and concluded that ASSHE is highly effective in food paste heating and cooling and the amount of heat transfer can be manipulated by changing various parameters of the Heat Exchanger. Studies show that the A-SSHE gives heat transfer coefficient values almost twice that of an equivalent C-SSHE.

Particular heat exchanger designs are better suited to products with certain attributes. Qualities like viscosity and particle size can help recognize which type of exchanger is best for any given need.

While various types of heat exchangers are used in the food industry, that the most general are plate heat exchangers. “Plate heat exchangers have been around for a long time, “They’re one of the most systematic methods of heat transfer for fluid products.”

On a basic level, plate exchangers contain multiple plates installed inside a frame. Fluid passes through the plates, allowing for heat transfer from the hot to the cold side. Plate heat exchangers must provide a adequate velocity across the plate to successfully transfer heat while also controlling pressure drops. Plate heat exchangers are all based on the common general principles. But they can be customized for various users and functions.

Run time challenge is sizing and design. Accurate sizing of a heat exchanger ensures the longest possible run. And when it comes to design, a good one can make all the difference. An even flow across the plates, for instance, helps to amplify operation time.

Food safety and sanitation best practices are a utmost focus for the food industry — now even more so, as FSMA deadlines approach. Clearly, part of a good hygiene program is making sure that equipment not only is easy to clean, but also stays as clean as possible for as long as possible.

“For plates, cleanability is tremendously dependent on flow rate. You want to have a high enough flow rate to provide good velocity and turbulence to eliminate whatever’s built up on the plates.” fat-free products, which act diversely from their full-fat counterparts

Fat-free products, which act diversely from their full-fat counterparts. During the fat-free craze, engineers had to adjust the design of heat exchangers to compensate for those properties.

Today’s smoothie trend presents a diverse challenge, indistinguishable to other products that may accommodate pulp or particulate. While some plate heat exchangers can’t be utilized for such products, Free Flow plates are planned to process them successfully.

“We have a Free Flow plate with an even 5-millimeter gap where the product flows, “The exchangers can handle more fine particulate, so products like pulpy juices, smoothies, and sauces can be processed on a plate heat exchanger instead of processors having to go with another technology that isn’t as systematic.”

As heat exchanger technology carry on to the rise, we at KERONE have a team of experts to help you with your need for Heat Exchanger from our wide experience.

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Microwave Continuous Vulcanization (CV) Rubber Curing Oven

Vulcanization is process of converting natural rubber or rubber polymers into more durable and mechanically strengthens rubber by the process of mixing sulfur and processing. This process results in changing the cross-linking bonds within the natural rubber and making bonds more strong and non-sticky.  Vulcanization curing is achieved by heating the natural rubber or rubber polymer at very high temperature along with sulfur or any other agent, such high level of temperature rise results into changing of bond within the rubber and resulting in non-sticky, maker it lesser deformable when heated, and removes the brittleness this helps rubber to achieve the desired level of elasticity. Continuous Vulcanization curingprocess is most common process used for variety of application. In the process Continuous Vulcanization curing rubber and accelerator is put under high temperature and pressure, this mixture is passed through the continuous heating line during the process, some of C-...

Organic Food and its increasing consumer demand

Organic Food Processing  is where organic raw materials are processed into food and drink. The organics standard of food processing is to protect the food constituents so that organic ingredients are used, and encourage the avoidance of unnecessary chemical or physical. Organic labeling offers consumers, the confidence that the eatables they consume are produced under controlled organic standards. Organic food should be of high nutritional and high natural quality. With the growing awareness even the governments of various countries have setup a separate body to monitor the whole Organic Processing System, in India that being National Program for Organic Production (NPOP). India is one of the upcoming leading processors in this sector. Some private standards demand that organic food should fulfill the criteria of wholesome nutrition, where processing methods must be seen as relevant tools. Most processing methods have more or less strong influences on product properties. Heat...