Skip to main content

Microwave Technology for Dehydration


Dehydrating is one amongst the most common processes in industry. This executed is enforced by numerous techniques, like freeze-drying. It’s an energy-consuming method. Microwave sources are a decent option to provide the energy dehydration for this method. In reality, it’s microwave-assisted dehydration. The microwave sources will be delivered around some kilowatts. Electromagnetic energy is transformed into thermal energy because of the interaction of electromagnetic fields and materials.

In addition to providing energy, the microwave-assisted dehydration is time-saving. This technique is quick because of penetrating electromagnetic fields within the material. It leads to volumetrically heating rather than heating from the surface of the material in standard ways. Usually, the frequency of electromagnetic fields is 2450 MHz that is allotted by regulatory commissions in dielectric heating ways. Within the following, the mechanism of this technique is represented. All relations governing the transfer of mass and heat are mentioned. The way to transfer and dissipate energy is represented. Dielectric properties of various materials are listed. The effective parameters in crucial insulator properties are mentioned.

Population growth of human societies leads to increasing the demand for needs like food, clothing, housing, etc. Meeting them needs new industrial ways alternatively traditional ones. Manufacturing of foodstuff is contains in this principle. Today, totally different processes are being done on the mineral, vegetable, and animal product. A number of them are pasteurization, sterilization, conservation, etc. every of them is employed for a selected purpose. Throughout these processes, physical, chemical, and biological changes occur. They have an effect on the standard of foodstuff (color, flavor, volume).

Drying is the most typical method to increase the life of food product to form them easier to keep up. Meanwhile, microwave technology has achieved a major position among alternative ways in food business. Not only is that this technique utilized in food business however additionally in pharmaceutical business and medical sciences, for removing water from aqueous solutions and conserving the blood, bone, and skin.

In conventional technique for drying foodstuff, it’s heated, sometimes by flowing hot air, to evaporate its moisture. Also, the heating may be done by alternative ways from direct solar radiation to using microwave energy. In dehydration technique, removing the moisture content of material is completed by sublimation of water molecules with internal heating once freezing the material and making a vacuum. Compared with typical ways, it causes little irreversible changes in food and so keeps the standard of product at a superb level. Rehydration, color (browning), and volume (volume reduction and consequently shrinkage) are key parameters in crucial the standard of foodstuff and are thought-about in. low temperature during this technique helps to prevent most biological reactions, and therefore it’s appropriate for dehydrating heat-sensitive material like biological product. However, this technique is pricey. it’s appropriate for valuable foodstuffs like coffee.

Microwave energy is utilized to defrosting meat. It reduces the desired time from hours to a couple of minutes. Also, it’s utilized in sterilizing some heat-sensitive foods and cacao bean roasting.

Considered the conventional and microwave-assisted freeze-drying method. It showed that the drying time is less than 20% for microwave-assisted freeze-drying method because of volumetrically heating in this method.

Drying (or dehydrating) is removing moisture content from a material. This phenomenon, that needed phase transition in water content of material, needs plenty of energy.

We at KERONE have a team of experts to help you with your need for microwave dehydration systems in various products range from our wide experience.

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Electromagnetic Energy in Food Processing

  The use of electromagnetic energy in food processing is considered with respect to food safety, nutritional quality, and organoleptic quality. The results of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiate on sources. Nonionizing microwave energy sources are more and more used in home and industrial food processing and are well-accepted by the end users. But, even though new-fangled Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and further plants products. Microwave  and  radio frequency  energy are allotments of the electromagnetic spectrum that can redeem heat to foods selectively and systematically. Explicitly, microwaves interrelate with water in foods to heat preponderant those allotments that are wet. End users are usual with microwave ovens as household appliances used to warm and cook foods, defrost frozen foods, and pop popcorn. On an industrial scale,...

Importance and applications of Industrial Minerals

  Industrial resources (minerals) are geological materials that are mined for their industrial worth, that are not fuel (fuel minerals or mineral fuels) and aren’t sources of metals (metallic minerals) but are utilized in the industries based on their physical and/or chemical properties. they’re utilized in their natural state or after beneficiation either as raw materials or as additives in a very wide range of applications. Industrial minerals could also be defined as minerals mined and processed (either from natural sources or synthetically processed) for the value of their non-metallurgical properties, that provides for their use in a particularly wide range of industrial and domestic applications.  As a general rule, they’ll also be defined as being non-metallic, non-fuel minerals. Obvious examples of naturally occurring  industrial minerals  include: clays sand talc limestone gypsum pumice potash Other examples of  natural industrial minerals  include...