Skip to main content

Different Methods of Grain Drying


 Grain drying is method of drying grain to stop spoilage throughout storage. The grain drying represented during this article is that which uses fuel- or electric-powered processes supplementary to natural ones, as well as swathing/windrowing for drying by close air and sunshine.

Hundreds of millions of tonnes of wheat, corn, soybean, rice and different grains as sorghum, sunflower seeds, rapeseed/canola, barley, oats, etc., are dried in grain dryers. Within the main agricultural countries, drying contains the reduction of moisture from about 17-30% w/w [clarification needed] to values between eight and 15%w/w, looking on the grain. The ultimate moisture content for drying should be adequate for storage. A lot of oil the grain has, the lower its storage moisture content is (though its initial moisture for drying will be lower). Drying is carried out as a requisite for safe storage, so as to inhibit microbic growth. However, low temperatures in storage are extremely suggested to avoid degradative reactions and, especially, the expansion of insects and mites. a decent maximum storage temperature is regarding eighteen °C.

The performance of a drier are often simulated with computer programs supported mathematical models that represent the phenomena concerned in drying: physics, physical chemistry, thermodynamics, and heat and mass transfer. Most recently computer models are used to predict product quality by achieving a compromise between drying rate, energy consumption, and grain quality. A typical quality parameter in wheat drying is bread creating quality and germination percentage whose reductions in drying are somewhat connected.

Drying starts at the bottom of the bin, that is the primary place air contacts. The dry air is referred to by the fan through a layer of wet grain. Drying happens in a layer of one to two feet thick that is termed the drying zone. The drying zone moves from the bottom of the bin to upper part, and once it reaches the very best layer, the grain is dry. The grain below drying zone is in equilibrium moisture content with drying air, which implies it’s safe for storage; whereas the grain on top still requires drying. The air is then forced out the bin through exhaust vent.

  • Allowable Storage Time
  • Proper moisture levels for safe storage
  • Equilibrium Moisture Content
  • Temperature
  • Aeration

The drying value is created from 2 parts: the cost of capital and also the operating expense. cost of capital is essentially rely upon the drying rate demand, and equipment value. operating expense refers to fuel, electricity and labor value. the number of energy needed to dry a bushel of grain is comparable for all the drying ways. Some ways rely mostly on natural air, whereas others might use lp heat or fossil fuel, that create energy price vary. Basically, fuel and electrical power are the foremost parts of the operating expense. Drying value is predicated on the B.T.U. consumption of temperature change from environment to desired one.

Classification of grain drying methods according to mode of heat transfer:

Storage drying methods

  • Low-temperature drying
  • Multiple-layer drying

Batch drying methods

  • Bin batch drying
  • Column batch drying

Continuous flow drying methods

  • Cross flow drying
  • Counter flow drying
  • Concurrent flow drying

Applications of grain drying

  • Sunflower drying
  • Bean drying
  • Corn drying

We at KERONE have a team of experts to help you with your need for drying of grains in various products range from our wide experience.

Comments

Popular posts from this blog

Different Types of Sterilization Process

  Sterilization can be accomplished by an amalgamation of heat, chemicals, irradiation, high pressure and filtration such as steam under pressure, dry heat, ultraviolet radiation, gas vapour sterilants, chlorine dioxide gas etc. Successful sterilization strategies are necessary for working in a lab and negligence of this could lead to severe consequences, it could unexpectedly cost a life. So what are the more frequently utilized methods of sterilization in the laboratory, and how do they work? The Sterilization is conveyed out by the methods according to requirement. The methods are: 1. Moist Heat Sterilization 2. Dry Heat Sterilization 3. Gas Sterilization and Others. Moist Heat Sterilization:  Moderate pressure is utilized in steam sterilization. Steam is utilized under pressure as a means of accomplishing an elevated temperature. It is dominant to confirm the accurate quality of steam is utilized in order to keep away the problems which follow, superheating of the steam, f...

Electromagnetic Energy in Food Processing

  The use of electromagnetic energy in food processing is considered with respect to food safety, nutritional quality, and organoleptic quality. The results of nonionizing radiation sources such as microwave and radio-frequency energy and ionizing radiate on sources. Nonionizing microwave energy sources are more and more used in home and industrial food processing and are well-accepted by the end users. But, even though new-fangled Food and Drug Administration approval of low and intermediate ionizing radiation dose levels for grains and further plants products. Microwave  and  radio frequency  energy are allotments of the electromagnetic spectrum that can redeem heat to foods selectively and systematically. Explicitly, microwaves interrelate with water in foods to heat preponderant those allotments that are wet. End users are usual with microwave ovens as household appliances used to warm and cook foods, defrost frozen foods, and pop popcorn. On an industrial scale,...

Importance and applications of Industrial Minerals

  Industrial resources (minerals) are geological materials that are mined for their industrial worth, that are not fuel (fuel minerals or mineral fuels) and aren’t sources of metals (metallic minerals) but are utilized in the industries based on their physical and/or chemical properties. they’re utilized in their natural state or after beneficiation either as raw materials or as additives in a very wide range of applications. Industrial minerals could also be defined as minerals mined and processed (either from natural sources or synthetically processed) for the value of their non-metallurgical properties, that provides for their use in a particularly wide range of industrial and domestic applications.  As a general rule, they’ll also be defined as being non-metallic, non-fuel minerals. Obvious examples of naturally occurring  industrial minerals  include: clays sand talc limestone gypsum pumice potash Other examples of  natural industrial minerals  include...