Skip to main content

Posts

Showing posts from 2022

Different Methods of Metal Curing

  Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. Even if it is strongly associated with the production of thermosetting polymers, the term curing can be used for all the processes where starting from a liquid solution, a solid product is obtained. During the curing process, single monomers and oligomers, mixed with or without a curing agent, react to form a tridimensional polymeric network. In the initial part of the reaction branches molecules with numerous architectures are formed, and their molecular weight will increase in time with the extent of the reaction till the network size is up to the size of the system. The system has lost its solubility and its viscosity tends to infinite. The remaining molecules begin to be with the macroscopic network till they react with the network creating different crosslinks. The crosslink density will increase un

Application and Popular Uses of Graphite

  Graphite, archaically referred to as plumbago, is a crystalline type of the element carbon with its atoms organized in a very hexagonal structure. It happens naturally during this kind and is the most stable kind of carbon under standard conditions. Under high pressures and temperatures it converts to diamond. Graphite is utilized in pencils and lubricants. It’s a good conductor of heat and electricity. Its high conductivity makes it helpful in electronic product like electrodes, batteries, and solar panels. The principal types of natural graphite, each occurring in different types of ore deposits, are A crystalline small flake of graphite (or flake graphite) occurs as isolated, flat, plate-like particles with hexagonal edges if unbroken. When broken the edges can be irregular or angular; Amorphous graphite: very fine flake graphite is sometimes called amorphous; Lump graphite (or vein graphite) occurs in fissure veins or fractures and appears as massive platy intergrowths of fibrous

PET Flakes Crystallizer and Dryer

  PET is highly hygroscopic and absorbs moisture from the atmosphere. Tiny amounts of moisture can hydrolyse PET within the melt part, reducing molecular weight. PET should be dry just prior to processing, and amorphous PET needs   crystallization   prior to drying so that the particles don’t stick together as they’re going through glass transition. Hydrolysis can occur due to moisture and this often can be seen as a reduction in the IV (Intrinsic Viscosity) of the product. PET is “semi-crystalline”. When the IV is reduced, the bottles are more brittle and tend to fail at the “gate” (injection point) during blowing and filling. It is very possible that due to the initial  moisture level  in the resin, and the amount removed during vacuum that a significant amount of moisture still remains as it is reaching its melt phase in the extruder. In its “crystalline” state it has both crystalline and amorphous portions in its molecular structure. The crystalline portion develops where the molec

How to compost food waste and use as organic fertilize

  Composting is the natural process of decomposition and recycling of organic material into a humus-rich soil amendment known as compost. Food waste is composed of organic matter which can be used for composting to make fertilizer. It is an effective and eco-friendly way of disposing of food waste in your kitchen. By using leftovers and other food waste, you can convert these smelly items from the kitchen waste into a highly organic product rich in nutrients that you can use to grow vegetables or flowers with it. Things like paper, twigs, and leaves are rich in carbon while grass, coffee, and tea grounds, fruit, and vegetables are rich in nitrogen. The proper mixture is key to good compost. Why use food waste as fertilizer? Food waste is a major challenge in the present world, tons of food is thrown away in the garbage. We could use all the food waste and prepare compost out of them which can be used as organic fertilizer. This way we save the earth from the pollution caused by food wa

Heat and Mass Transfer Modeling for Fruit Drying

  Drying is an efficient technique for fruit storage/preservation. Drying may retain quality end product that is difficult, because all fruits are variable in structure, so, heat and mass transfer modeling (operating parameters) is a helpful technique to deal with it. This could only be done by selecting the proper sort of drying equipment and understanding the science behind the drying method as well as thermal properties of fruit. Drying method have several effects on different heat sensitive fruits elements and equipment (sensors etc.) also that result into increase in maintenance price, diffusion rate goes to critical limits etc. Because, choice of an acceptable drying technique and equipment is most significant regarding product quality and its amount. Modeling of a drying method considering different drying parameters and their effects on final quality of product and economic importance are mentioned here. we must always have information regarding the drying mechanics. So, that k

Evaluation of food drying with air dehumidification system

  The main challenge in global food demand is how to obtain high quality dry food products in efficient processing. The dry food or its extract can be a good option due to the long life storage and consumer convenience. To realize this preference, drying process offers the major role corresponding to the moisture removal from wet product. In general, the agriculture and food products with high moisture content (vegetables, herbs, starch products) are dried at low to moderate temperatures to conserve the valuable ingredients (protein, vitamins, enzymes, oil) as well as physical appearance such as color, and texture. Meanwhile, the modern drying technology has been widely developed with attractive results in the product quality aspects. However, the efficient dryer development has been scared. For example, the energy efficiency in freeze and low temperature dryers is lower than that of a  conventional convective dryer . This is due to the low value of driving force for moisture transfer

Validation of Dry Heat Sterilization Processes

  Dry Heat   Sterilization   is a sterilization process that can be used to terminally sterilize health care products, medical devices, equipment, components or bulk active pharmaceutical ingredients by exposing the items to a temperature of ≥ 160°C for a defined time. For heat stable items, such as glassware or stainless steel equipment, a dry heat sterilization cycle can be run at 250°C to remove bacterial endotoxins from the items. This process is also referred to as Depyrogenation. Bacterial endotoxins are fever inducing compounds, or pyrogens, that are released when the cell walls of gram negative bacteria such as Escherichia coli are destroyed. Validation of dry heat sterilization cycle(s) is required by ANSI, AAMI, ISO, USP and the FDA to ensure that all items that are required to be sterile or pyrogen free are able to consistently and reliably be sterilized to reduce the chance of introducing or spreading an infectious microorganism or pyrogen. Installation Qualification (IQ) V

Effect of Drying Characteristics of Garlic

  Natural sun drying is one of the most common ways to preserve agricultural product. the most purpose in drying farm manufacture is to reduce its water activity from the harvest level to the safe storage level in order to increase its shelf life. Once the product has been dried, its rate of deterioration because of respiration, insects, and microbial activity and biochemical reactions should diminish resulting in maintenance of quality of the stored product. It does improve bargaining position of the farmer to keep up comparatively constant value of his product. Drying reduces post-harvest losses and transportation prices since most of the water are taken out from the product throughout the   drying method . In India, sun drying is the most typically used technique to dry the agricultural material like grains, fruits and vegetables. In sun drying, the garlic is spread in a very skinny layer on the bottom and exposed on to solar radiation, ambient temperature, wind velocity, relative h

Continuous Granulation and Drying Techniques Trends

  The term “continuous” is applied to all production or manufacturing processes that run with a continuous flow. With that definition,   continuous processing of solid  dosage products in the   pharmaceutical industry   means starting the process from the synthesis of API to the final packaging of tablets or capsules 24/7 all year-round. The pharmaceutical industry has been slow to adopt or even consider the concept of continuous processing, even though its value has already been proven in other industries—polymer, food, dairy, electronics, automobile and petrochemical/chemical—which have implemented fully  continuous production  processes for many years. The pharmaceutical industry is also dominated by batch processes due to the smaller amounts that must be processed compared to other industries. The small material quantities available during the development stage also dictate the use of a batch process during the design phase of the formulation and manufacturing process, and these sa

Drying System Temperature Control for a Large Format Textile Printer

In the digital giant format textile business, the drying system is one amongst the most vital subsystems within the printer. The objectives of this method are dry the media enough in order that there’s no transfer between the rolled media and also the following one, and to produce a hot air (airflow and temperature) within the print zone to reduce bleed and coalescence. And one amongst the most critical parameters within the dryers is that the management of the temperature uniformity on the scan axis within the print zone. A fine control of the temperature uniformity will increase the media versatility by enabling lower temperatures within the print zone whereas drying and increase the throughout capability level. Also improves bleed and coalescence and alternative image quality artifacts. In many printers, the drying system is based on convection with a hot chamber flowing hot air through several diffusers to the print zone. In those drying systems, in most of the cases, the temperatu